Full Content is available to subscribers

Subscribe/Learn More  >

Optimum Runner Design for Die Casting Using CFD Simulations and Verification With Water-Model Experiments

[+] Author Affiliations
Ken’ichi Kanazawa, Ken’ichi Yano

Mie University, Tsu, Mie, Japan

Jun’ichi Ogura

Yamaha Motor Co., Ltd., Iwata, Shizuoka, Japan

Yasunori Nemoto

Flow Science Japan, Inc., Taito, Tokyo, Japan

Paper No. IMECE2014-37419, pp. V007T09A081; 7 pages
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering Systems and Technologies
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4954-5
  • Copyright © 2014 by ASME


This study aimed to optimize the design of a runner for high-pressure die casting (HPDC) using computational fluid dynamics (CFD) simulations, and to verify the effectiveness of the runner with water-model experiments. A runner is a part of the flow path through which molten metal enters a product part. As a design problem, we sought to optimize the shape of the runner to minimize air entrainment in the runner and align the flow of molten metal after it passed through the runner. The problem was solved using our proposed nonparametric shape optimization method. The method is based on a genetic algorithm (GA), and directly treats a geometric shape that is comprised of several curves as an individual of a GA in the form of a set of mathematical functions. In addition, the crossover, which is one of the genetic operations, is defined as a weighted summation of two parent curves. Thus, the optimization method can generate optimized shapes with a lot of flexibility. The effectiveness of the optimized shape of the runner was demonstrated with both CFD simulations and water-model experiments using a visualization device for HPDC.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In