Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of Flow Fields and Head Losses of Trash-Barriering in Pumping Station Based on VOF Model

[+] Author Affiliations
Shuquan He, Baoyun Qiu, Shiji Chu, Xiaoli Feng

Yangzhou University, Yangzhou, Jiangsu, China

Paper No. IMECE2014-36617, pp. V007T09A074; 7 pages
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering Systems and Technologies
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4954-5
  • Copyright © 2014 by ASME


In order to calculate flow fields behind the trash rack and the head loss caused by trash-barriering, the waterweed lump congregated in front of the trash rack was simplified as watertight entity that has the same shape and the same size of the waterweed lump. We adopted ANSYS CFX software and VOF method in numerical simulation of the flow fields of trash-barriering, calculated several schemes, and analyzed the influences of blockage. The results show that: the water level difference and the head loss of numerical simulation are consistent with results of experiment. Because of tiny water permeability of the waterweed lump in front of the trash rack, there are nuances between the flow fields behind the trash rack of numerical simulation and experiment. The specific gravity of the waterweeds is less than that of water and the waterweeds block the up part of the trash rack, which makes the flow velocity through the down unblocked part of the trash rack increase rapidly. As a result, the velocity behind the trash rack increases in the lower area, and decreases, even the backflow appears in the upper area. With the increase of the blockage ratio, the turbulence scale behind the trash rack increases. When the blockage ratio increases to 0.7, the velocity uniformity already decreases to −1.57. The head loss of trash-barriering increases when the blockage ratio and the velocity in front of the trash rack increase. For certain velocity in front of the trash rack, when the blockage ratio reaches 0.6∼0.7, the head loss would increase rapidly.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In