Full Content is available to subscribers

Subscribe/Learn More  >

Multi-Objective Optimization for Francis Turbine Runner Using Genetic Algorithm

[+] Author Affiliations
Koma Sato

Hitachi, Ltd., Hitachinaka, Ibaraki, Japan

Yuta Tamura, Kiyohito Tani

Hitachi Mitsubishi Hydro Corporation, Hitachi, Ibaraki, Japan

Paper No. IMECE2014-36401, pp. V007T09A073; 6 pages
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering Systems and Technologies
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4954-5
  • Copyright © 2014 by ASME


A multi-objective optimization system for a Francis turbine runner that uses a genetic algorithm was developed. Francis turbine is widely used because of its flexibility of meriodinal geometry. However, since a runner of a Francis turbine consists of fixed blades, it can show a high performance in a narrower range of operating conditions compared with diagonal and axial hydraulic turbines. Thus, the design of a Francis turbine runner needs plentiful design experience. The aim of this study is to develop an automatic design system for a Francis turbine runner and evaluate its availability. This system optimizes six objective functions: runner efficiency, swirling losses at partial load point and over load point, minimum pressure coefficient on the blade surface, deviation of runner head, and area deviation of outlet opening from the baseline design. The runner head deviation represents the difference from the required specifications. The optimization procedures are as follows; first, an initial design population to create runner geometries was generated by Latin hypercube sampling method. Next, runner geometries were created in accordance with the design variables of the initial design population. Then, objective functions were evaluated. Since the area deviation of outlet opening has a strong correlation with the runner head deviation and can be calculated without computational fluid dynamics (CFD) analysis, we tried to reduce the number of CFD evaluations by using this correlation. For all runner geometries, the area deviation of outlet opening was calculated, and mesh generations and CFD analysis of those that exceeded a deviation threshold were skipped. The rest of the objective functions were evaluated by CFD analysis. Analysis models at design point, partial load point, and over load point were created. In the CFD stage, steady and single-phase analysis was executed to evaluate objective functions. Finally, the population of the next generation was created by using a multi-objective genetic algorithm. By iterating these procedures, optimized runners superior to the baseline design were obtained efficiently and automatically.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In