0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamics of Thin Liquid Bilayers Subjected to an External Electric Field

[+] Author Affiliations
Hadi Nazaripoor, Charles R. Koch

University of Alberta, Edmonton, AB, Canada

Subir Bhattacharjee

Water Planet Engineering, Inglewood, CA

Paper No. IMECE2014-37302, pp. V007T09A062; 7 pages
doi:10.1115/IMECE2014-37302
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering Systems and Technologies
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4954-5
  • Copyright © 2014 by ASME

abstract

Spatiotemporal evolution of liquid-liquid interface leading to dewetting and pattern formation is investigated for thin liquid bilayeres subjected to the long range electrostatic force and the short range van der Waals forces. Based on the 2D weakly non-linear thin film equation three dimensional structure evolution is numerically simulated. A combined finite difference for the spatial dimensions and an adaptive time step ODE solver is used to solve the governing equation. For initially non-wetting surfaces, the stabilizing effects of viscosity and interfacial tension and the destabilizing effect of the Hamaker constant are investigated. Electrostatic interaction is calculated analytically for both perfect dielectric-perfect dielectric and ionic conductive-perfect dielectric bilayers. Ionic conductive-perfect dielectric bilayers based on the electric permittivity ratio of layers are found to be stabilized or deformed in response to the applied external electric field.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In