Full Content is available to subscribers

Subscribe/Learn More  >

Dynamics of a Micro-Bubble Between Two Spherical Particles

[+] Author Affiliations
Mainul Hasan

McGill University, Montreal, QC, Canada

Paper No. IMECE2014-37053, pp. V007T09A061; 10 pages
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering Systems and Technologies
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4954-5
  • Copyright © 2014 by ASME


The effects of high intensity ultrasound field in water and the resulting volume oscillations of one underwater micron-sized gas bubble initially resting between two larger but micron-sized solid particles are numerically studied. The model assumes that the two particles remain at rest while the bubble changes its shape in the presence of the particles. Specifically, this study predicts the bubble’s expansion, collapse, and interaction effects with the adjacent two solid spherical particles which are not necessarily of equal size. The model assumes that the flow surrounding the bubble and two particles is incompressible. A 2-D Finite Element method which is capable of tracking the ultra fast moving boundary of the bubble is developed and an associated computer program is written to solve the modeled equations and boundary conditions. In the absence of a similar study in the literature, the validation (although not shown here) of the numerical method is carried out by solving the expansion and collapse of a single bubble initially resting in an infinite extent of fluid for which theoretical results are well-known in the literature. A good agreement is obtained between the numerical and theoretical results [18]. Numerical results for the temporal shapes of the bubble, its lifetimes for various parametric cases are provided and discussed. The variations of the pressure and the velocity fields in the liquid surrounding the bubble and two particles are also analyzed and discussed.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In