Full Content is available to subscribers

Subscribe/Learn More  >

Gas Separation Using a Membrane

[+] Author Affiliations
Nawaf Alkhamis, Ali Anqi, Dennis E. Oztekin, Abdulmohsen Alsaiari, Alparslan Oztekin

Lehigh University, Bethlehem, PA

Paper No. IMECE2014-37299, pp. V007T09A041; 6 pages
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering Systems and Technologies
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4954-5
  • Copyright © 2014 by ASME


Gas-gas separation, to purify natural gas, is simulated using a membrane supported by a porous medium. Removing acidic gasses from the natural gas is gaining attention recently. Computational fluid dynamics simulations are conducted for asymmetric multi-component fluid flows in a channel. The flow system consists of a circular cross-section channel bounded by a porous layer which supports the membrane wall. The Navier-Stokes equations model the flow in the channel, while the flow in the porous medium is modeled by both the Darcy’s law and the extended Darcy’s law. Mass transport equations, including mass diffusion of mixtures of two gasses (CO2 and CH4), are employed to determine the concentration distribution. The membrane will be modeled as a functional surface; where the flux of each component will be determined based on the local partial pressure of each species, composition, and permeability and selectivity of the membrane. The effect of the porous medium on the membrane performance will be determined for a wide range of Reynolds number. The performance of the system will be measured by maximum mass separation with minimal frictional losses.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In