0

Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of the Process-Structure-Behavior Interaction in Bio-Sourced Polymers: Role of the Crystallization Kinetics

[+] Author Affiliations
Mhamed Boutaous, Zakariaa Refaa, Matthieu Zinet, Shihe Xin, Patrick Bourgin

Université de Lyon, Villeurbanne, France

Paper No. IMECE2014-39729, pp. V007T09A037; 7 pages
doi:10.1115/IMECE2014-39729
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering Systems and Technologies
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4954-5
  • Copyright © 2014 by ASME

abstract

PLA (Poly Lactic Acid) is a bio-sourced and biodegradable polymer. It represents an alternative for polymers issued from petrochemical synthesis. Unfortunately, the crystallization kinetics of PLA is very slow and limits the possibility to extend its application in several industrials domains. The enhancement of the PLA crystallization kinetic can be obtained by addition of nucleating agents of by ordering the molecular chains during flow, as in processing conditions. During processing of thermoplastic polymer experiences several thermomechanical conditions influencing drastically its final properties and mechanical behavior. During injection molding process, macromolecules are oriented and ordered due to the shear and elongation imposed by the melt flow in the mold during the filling step. As a consequence, supplementary nucleation is created in the polymer, leading to the acceleration of the crystallization kinetics. In this work, we propose to analyze and to quantify the role of the flow, the temperature kinetics and the nucleating agent on injected PLA parts structure and their mechanical behavior. A parametric analysis of the relationship between the polymer, its structure and the processing condition will be presented. The competition (sometimes antagonism) between several parameters, as the shear rate, the temperature kinetics and the nucleating agent will be highlighted.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In