Full Content is available to subscribers

Subscribe/Learn More  >

Velocity Field and Energy Dissipation in Viscoplastic Flow in Tubes of Non-Circular Cross-Section

[+] Author Affiliations
Mario F. Letelier, Felipe Godoy

University of Santiago of Chile, Santiago, Chile

Dennis A. Siginer

University of Santiago of Chile, Santiago, ChileBotswana International University of Science and Technology, Botswana

Paper No. IMECE2014-36246, pp. V007T09A033; 6 pages
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering Systems and Technologies
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4954-5
  • Copyright © 2014 by ASME


An analytical method for determining the velocity field, shear stress and energy dissipation in viscoplastic flow in non-circular straight tubes is presented. Bingham’s model of fluid is used for the case of tubes with several cross-sectional contours that can be arbitrarily chosen through a shape factor imposed in the solution for the longitudinal velocity. The analysis is extended to steady flow in tubes in which the cross-section contour exhibits sharp corners. In these cases three flow zones are distinguished: stagnant, non-zero deformation, and plug zones. The method provides the expressions for determining the boundaries and characteristics of those three zones for a wide variety of cross-section shapes. In particular the dynamics of plug-zones for large values of the yield stress and for contours that markedly differ from circumferences is analyzed. Energy dissipation is determined throughout the entire cross-section, so that the effect of shape on mechanical energy loss is assessed in terms of the yield stress and viscosity of the fluid. Some general expressions that help understand energy dissipation mechanisms are derived by using natural coordinates for the velocity field and related variables.

These results draw on several recent works from other researchers and the present authors, which have highlighted the significant difficulty of determining the zones of zero deformation in viscoplastic flow when the related solid boundaries are not elementary.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In