0

Full Content is available to subscribers

Subscribe/Learn More  >

CFD Simulation of Boiling Heat Transfer Using OpenFOAM

[+] Author Affiliations
Mehrdad Shademan, Ram Balachandar, Ron Barron

University of Windsor, Windsor, ON, Canada

Paper No. IMECE2014-37585, pp. V007T09A016; 8 pages
doi:10.1115/IMECE2014-37585
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering Systems and Technologies
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4954-5
  • Copyright © 2014 by ASME

abstract

An Eulerian-Eulerian two-phase flow model has been developed to simulate the boiling heat transfer phenomenon in a pipe flow. The model was implemented in the OpenFOAM source code. The code development process was divided into two sections. In the first step, an adiabatic two-phase flow model which takes into account the effect of interfacial forces was developed. In the second step, the energy equation was activated to account for non-adiabatic conditions. In order to include the boiling effect, several different subroutines which model evaporation and condensation phenomena were attached to the solver. Results of the two-phase adiabatic flow and from the boiling model are compared with available numerical and experimental data. The simulation predictions are in reasonable agreement with the experimental data and show significant improvement relative to previous numerical results, which suggests the validity of the developed model for boiling heat transfer problems.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In