Full Content is available to subscribers

Subscribe/Learn More  >

Using Shear and DC Electric Fields to Manipulate and Self-Assemble Dielectric Particles on Microchannel Walls

[+] Author Affiliations
Minami Yoda, Necmettin Cevheri

Georgia Institute of Technology, Atlanta, GA

Paper No. IMECE2014-37547, pp. V007T09A012; 10 pages
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering Systems and Technologies
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4954-5
  • Copyright © 2014 by ASME


Manipulating suspended neutrally buoyant colloidal particles of radii a = O(0.1 μm–1 μm) near solid surfaces, or walls, is a key technology in various microfluidics devices. These particles, suspended in an aqueous solution at rest near a solid surface, or wall, are subject to wall-normal “lift” forces described by the DLVO theory of colloid science. The particles experience additional lift forces, however, when suspended in a flowing solution. A fundamental understanding of such lift forces could therefore lead to new methods for the transport and self-assembly of particles near and on solid surfaces.

Various studies have reported repulsive electroviscous and hydrodynamic lift forces on colloidal particles in Poiseuille flow (with a constant shear rate γ̇ near the wall) driven by a pressure gradient. A few studies have also observed repulsive dielectrophoretic-like lift forces in electroosmotic (EO) flows driven by electric fields.

Recently, evanescent-wave particle tracking has been used to quantify near-wall lift forces on a = 125 nm–245 nm polystyrene (PS) particles suspended in a monovalent electrolyte solution in EO flow, Poiseuille flow, and combined Poiseuille and EO flow through ∼30 μm deep fused-silica channels. In Poiseuille flow, the repulsive lift force appears to be proportional to γ̇, a scaling consistent with hydrodynamic, vs. electroviscous, lift.

In combined Poiseuille and EO flow, the lift forces can be repulsive or attractive, depending upon whether the EO flow is in the same or opposite direction as the Poiseuille flow, respectively. The magnitude of the force appears to be proportional to the electric field magnitude. Moreover, the force in combined flow exceeds the sum of the forces observed in EO flow for the same electric field or in Poiseuille flow for the same γ̇. Initial results also imply that this force, when repulsive, scales as γ̇1/2. These results suggest that the lift force in combined flow is fundamentally different from electroviscous, hydrodynamic, or dielectrophoretic-like lift.

Moreover, for the case when the EO flow opposes the Poiseuille flow, the particles self-assemble into dense stable periodic streamwise bands with an average width of ∼6 μm and a spacing of 2–4 times the band width when the electric field magnitude exceeds a threshold value. These results are described and reviewed here.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In