Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Study of Drag Forces in Gravity-Induced Separation for Water Dominated Dispersed Oil-Water

[+] Author Affiliations
Elionora A. Caldera, Miguel Asuaje

Simón Bolívar University, Caracas, Venezuela

Paper No. IMECE2014-36922, pp. V007T09A002; 7 pages
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering Systems and Technologies
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4954-5
  • Copyright © 2014 by ASME


In recent years, the oil sector has been struggling with the amount of water produced associated with the total volume of oil production. This quantity is known as water cut and could be over 90% in oil extraction. Handling of this water generates additional costs, affecting the sector’s revenues. In order to solve this problem, several techniques to reduce water cut in the wellbore have been applied.

This paper evaluates CFD (computational fluid dynamics) models to predict phase segregation in dispersed oil in water flows. This evaluation has been conducted in an attempt to use CFD models to improve the design methodology of an inline separator of oil-water flow for petroleum production systems [1].

In this 3D study, three cases simulating water dominated dispersed oil-water flow in an inclined pipe 45° from horizontal, were evaluated numerically using a CFD model The oil was considered as the disperse phase and the water as the continuous phase, using Ansys®CFX. Mono size droplet dispersion was employed to represent the dispersed phase. The equations for the forces considered in this study are: drag and buoyancy.

The simulated results are compared with the experimental data, which includes water volume fraction, drop pressure and separation efficiency. The result shows an improvement of over 50% in the experimental values, which match the values of the total flow rate (Q), water holdup (Hw) and pressure drop (ΔP), deviating by less than 4%.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In