Full Content is available to subscribers

Subscribe/Learn More  >

Integration of a CaO-Based Thermal Storage System in an IGCC Plant With Carbon Capture

[+] Author Affiliations
Annelies Vandersickel, Randall P. Field

Massachusetts Institute of Technology (MIT), Cambridge, MA

Alexander Mitsos

RWTH Aachen University, Aachen, Germany

Paper No. IMECE2014-38113, pp. V06AT07A011; 9 pages
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 6A: Energy
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4951-4
  • Copyright © 2014 by ASME


Using pre-combustion CO2-capture, IGCC plants show significant potential for efficient power generation with carbon capture. The gasification and gas processing steps however have multiple temperature and flow constraints which severely limit the flexibility of IGCC plants to meet the dynamic demands of the current grid. To address this issue, a CaO-based energy storage system has recently been proposed to substantially increase the load range of a base IGCC plant without cycling the gasifier island.

In this work, further storage configurations have been assessed, addressing the inefficiencies identified in previous work. In particular, the following cases have been investigated: directly fired calciners with varying make-up flow rate to minimize the purge stream energy loss, directly fired calciners with improved heat integration to reduce the calciner syngas demand and an indirectly fired calciner to minimize the ASU penalty. Additionally, an alternative storage integration strategy after the Selexol unit has been compared both with respect to its performance and its impact on the base IGCC plant design and operation. To this end, process simulation was undertaken in Aspen Plus™. As demonstrated, the CaO based energy storage system can be effectively used to modulate the IGCC net power output by ±20–25%, while maintaining the capture capacity of 90% of the CO2-emissions. Improvement of the particle reactivity and the internal heat recuperation were found to impact the round-trip efficiency the most.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In