0

Full Content is available to subscribers

Subscribe/Learn More  >

Stability Determination in Turning Using Persistent Homology and Time Series Analysis

[+] Author Affiliations
Firas A. Khasawneh

State University of New York Institute of Technology, Utica, NY

Elizabeth Munch

University of Minnesota, Minneapolis, MN

Paper No. IMECE2014-40221, pp. V04BT04A038; 9 pages
doi:10.1115/IMECE2014-40221
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 4B: Dynamics, Vibration, and Control
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4648-3
  • Copyright © 2014 by ASME

abstract

This paper describes a new approach for ascertaining the stability of autonomous stochastic delay equations in their parameter space by examining their time series using topological data analysis. We use a nonlinear model that describes the tool oscillations due to self-excited vibrations in turning. The time series is generated using Euler-Maruyama method and then is turned into a point cloud in a high dimensional Euclidean space using the delay embedding. The point cloud can then be analyzed using persistent homology. Specifically, in the deterministic case, the system has a stable fixed point while the loss of stability is associated with Hopf bifurcation whereby a limit cycle branches from the fixed point. Since periodicity in the signal translates into circularity in the point cloud, the persistence diagram associated to the periodic time series will have a high persistence point. This can be used to determine a threshold criteria that can automatically classify the system behavior based on its time series. The results of this study show that the described approach can be used for analyzing datasets of delay dynamical systems generated both from numerical simulation and experimental data.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In