Full Content is available to subscribers

Subscribe/Learn More  >

Stochastic Robust Hybrid Observer With Applications to Automotive Slip Angle Estimation

[+] Author Affiliations
Kaveh Merat, Hamidreza Razavi, Hassan Salarieh, Aria Alasty, Ali Meghdari

Sharif University of Technology, Tehran, Iran

Paper No. IMECE2014-39436, pp. V04BT04A032; 10 pages
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 4B: Dynamics, Vibration, and Control
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4648-3
  • Copyright © 2014 by ASME


In this article, the state estimation for Automotive Slip Angle considering the measurement noise in sensor is addressed. Real-time measurement of the slip angle is applicable to many active vehicle safety applications, such as rollover prevention and yaw stability control. As the sensors that measure slip angle directly are expensive, the method to extract slip angle from other available sensors in vehicle is considered. First from the simplified nonlinear dynamic system of vehicle, a Piecewise Affine (PWA) model with calculated uncertainties is obtained. The uncertainties are the result of nonlinear system deviation from PWA model. Then using the PWA model, a Stochastic Robust Hybrid Observer design is developed to estimate the slip angle. Design of the Observer is based on Linear Matrix Inequalities which gives bound on the estimation variance based on the sensor noise measurements. Finally, through simulation, the effectiveness and performance of this method is investigated.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In