Full Content is available to subscribers

Subscribe/Learn More  >

Ceramic on-Ceramic Hip Implants: Analysis of Friction Induced Squeal

[+] Author Affiliations
Mark Sidebottom, Manish Paliwal

The College of New Jersey, Ewing, NJ

D. G. Allan

Orthpopedic Center of Illinois, Springfield, IL

Paper No. IMECE2014-36821, pp. V003T03A079; 6 pages
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 3: Biomedical and Biotechnology Engineering
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4646-9
  • Copyright © 2014 by ASME


Ceramic-on-Ceramic (CoC) bearings are an ideal choice for a total hip replacement because of the ceramic bearings’ longer wear life than Metal-on-Metal or Metal-on-Polyethylene bearings. Friction-induced squeaking has been reported in 1–10% of patients who have a ceramic-on-ceramic total hip replacement, which is a subject of annoyance. Many mechanisms have been proposed to address the squeaking phenomena in CoC hip replacements, but there is no consensus among researchers on the root cause behind the squeaking of hip implants. The goal of this study was to investigate the possible factors attributing to the hip squeak, and understand the underlying phenomenon based on the coupling stiffness of the bearing surface. Boundary conditions for the CoC hip bearing to produce audible noise were also identified. An explanted Stryker Trident CoC hip bearing that had been removed due to squeaking was analyzed visually and by computer simulation. Grey marks on the femoral head of the implant showed material transfer of titanium alloy onto the alumina head. Using modal analysis, the natural frequencies of all the components of the implant were determined. Random vibration analysis was conducted to identify the ideal boundary conditions for the CoC hip bearing.

The results from the modal analysis and calculated stiffness and damping coefficients were used in the mathematical two degree-of-freedom (DOF) model to calculate the velocity and position of the two masses in the system. State-Space plots of the parametric analysis were used to evaluate the stability of the system. Mathematical Analysis involved the investigation of the role of the frictional stick-slip phenomenon of the metal shell and ceramic liner on squeal. The size of the limit cycle provides an indication of the degree of severity of a noisy condition.

With only metallic shell affixed to the acetabulum constrained, the modal natural frequency was 3600 Hz which was very close to the free vibration results of the bearing. The Power Spectral Densities displayed the audible frequencies at 11.4 kHz. The limit cycle plots show that a variation in coupling contact stiffness has an influence on the behavior/stability of the system. The study underscored the relevance of material transfer on the bearing surface using the mathematical analysis by varying the coupling stiffness of the bearing surface. In addition, random vibration analysis in conjunction with the parametric analysis identified the ideal boundary condition to produce the squeal frequencies as observed by others.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In