0

Full Content is available to subscribers

Subscribe/Learn More  >

The Development of a Dynamic Adaptive Driving Simulator

[+] Author Affiliations
Sarah M. Tudor, Stephanie L. Carey, Rajiv V. Dubey

University of South Florida, Tampa, FL

Paper No. IMECE2014-40152, pp. V003T03A064; 6 pages
doi:10.1115/IMECE2014-40152
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 3: Biomedical and Biotechnology Engineering
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4646-9
  • Copyright © 2014 by ASME

abstract

The ability to drive a car is an important skill for individuals with a spinal cord injury to maintain a high quality of life, particularly their freedom and independence. However, driving with a physical disability often requires the installation of an adaptive driving system to control steering, gas, and braking. The two main types of adaptive driving controls are mechanical and electrical, also known as drive by wire (DBW). DBW controls work by converting electric signals to mechanical actuators. Driving simulators are useful tools for adaptive driving systems because they allow users to test different control devices, to practice driving without the dangers of being on the road, and can be used as a safe way to evaluate disabled drivers. This study focused on the development of a dynamic driving simulator using DBW controls because most studies focus on mechanical controls and not DBW controls and often use static simulators.

The simulator was developed using the Computer Assisted Rehabilitation Environment (CAREN) virtual reality system. The CAREN system (Motek Medical, Amsterdam, Netherlands) includes a six degree of freedom motion base, an optical motion capture system, a sound system, and a 180-degree projection screen. The two DBW controls, a lever device to control the gas and brake and a small wheel device to control steering, sent an electric signal to a Phidget board, which interfaced with the CAREN system. Several different driving scenarios were created and imported into CAREN’s D-Flow software. A program was developed in D-Flow to control the scene and motion of the platform appropriately based on the DBW controls via the Phidget. The CAREN system dynamically controlled the motion platform based on the user’s input. For example, if the user applied the brake suddenly, the user felt a deceleration from the motion platform moving backwards. The driving simulator showed the capability to provide dynamic feedback and, therefore, may be more realistic and beneficial than current static adaptive driving simulators. The dynamic adaptive driving simulator developed may improve driving training and performance of persons with spinal cord injuries. Future work will include testing the system with and without the dynamics from the moving platform to see how this type of feedback affects the user’s driving ability in the virtual environment.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In