Full Content is available to subscribers

Subscribe/Learn More  >

A Generalized Runge-Kutta Method for Stability Prediction of Milling Operations With Variable Pitch Tools

[+] Author Affiliations
Jinbo Niu, Ye Ding, Limin Zhu, Han Ding

Shanghai Jiao Tong University, Shanghai, China

Paper No. IMECE2014-39721, pp. V02AT02A060; 8 pages
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 2A: Advanced Manufacturing
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4643-8
  • Copyright © 2014 by ASME


This paper extends the generalized Runge-Kutta method (GRKM) to predict the machining stability of milling systems with variable-pitch tools. Different from the uniform cutters with fixed pitch angles, the variation of tooth distribution angles of variable pitch cutters significantly affects the stability diagrams of the milling systems. From the viewpoint of the regenerative chatter, the milling system with non-uniform tools is governed by a delayed differential equation (DDE) with multiple delays. Afterwards, the GRKM, an approach verified with high computational accuracy and efficiency for DDEs with a single delay, is extended to tackle the milling systems with multiple delays based on Floquet theory. Besides the pitch angles, other geometry parameters of the cutter are also taken into consideration, such as the helix angle, which is proved with limited influence on the stability lobes. With the objective of maximizing productivity, the resultant stability charts provide valuable reference for the geometry design of variable-pitch cutters and for the choice of machining parameters, i.e. the spindle speed and the depth of cut.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In