Full Content is available to subscribers

Subscribe/Learn More  >

Multi-Disciplinary Design Optimization of Transonic Fan Blade Design Using Analytical Target Cascading

[+] Author Affiliations
Saima Naz, Christophe Tribes, J.-Y. Trépanier, Eddy Petro

École Polytechnique de Montréal, Montréal, QC, Canada

Jason Nichols

Pratt & Whitney Canada, ON, Canada

Paper No. IMECE2014-36903, pp. V001T01A068; 11 pages
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 1: Advances in Aerospace Technology
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4642-1
  • Copyright © 2014 by ASME


Analytical Target Cascading (ATC), a multilayer multidisciplinary design optimization (MDO) formulation employed on a transonic fan design problem. This paper demonstrates the ATC solution process including the specific way of initializing the problem and handling system level and discipline level targets. High-fidelity analysis tools for aerodynamics, structure and dynamics disciplines have been used. A multi-level parameterization of the fan blade is considered for reducing the number of design variables. The overall objective is the transonic fan efficiency improvement under structure and dynamics constraints. This design approach is applied to the redesign of the NASA Rotor 67. The overall study explores the key points of implementation of ATC on transonic fan design practical problem.

Copyright © 2014 by ASME
Topics: Design , Optimization , Blades



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In