0

Full Content is available to subscribers

Subscribe/Learn More  >

Transient Two-Phase Effects in an Aeroengine Bearing Chamber Scavenge Test Rig

[+] Author Affiliations
Budi Chandra

Surya University, Banten, Indonesia

Kathy Simmons

University of Nottingham, Nottingham, UK

Paper No. IMECE2014-37554, pp. V001T01A046; 10 pages
doi:10.1115/IMECE2014-37554
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 1: Advances in Aerospace Technology
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4642-1
  • Copyright © 2014 by ASME

abstract

Aeroengine bearing chambers typically contain bearings, seals, shafts and static parts. Oil is introduced for lubrication and cooling and this creates a two phase flow environment that may contain droplets, mist, film, ligaments, froth or foam and liquid pools. Efficient and effective liquid removal from a bearing chamber is a functional requirement and in recent years the University of Nottingham Technology Centre in Gas Turbine Transmission Systems has been conducting an experimental and computational research program one strand of which is investigating bearing chamber off-take flows. Initial investigations focussed on a chamber where there was a relatively deep pocket for oil collection below the chamber [1, 2]. In more recent studies Chandra et al have investigated a shallower geometry [3]. In both sets of studies, chamber residence volume and wall film thickness data have been obtained for a range of shaft speeds, scavenge ratios and liquid supply rates. Two methods of introducing liquid to the chamber have been used: a film generator that puts liquid directly onto the chamber wall and a droplet inlet system that distributes droplets from the rotating shaft.

During some of the previous investigations, visual data relating to the two phase flow in the outlet pipe immediately below the chamber was gathered together with data from pressure transducers one located in this pipe and one on the chamber itself. It has been observed that for some parameter combinations the chamber flow is gravity dominated whereas for others (typically at higher shaft speeds) the flow is shear dominated. During transition between regimes a pressure spike on the pipe pressure transducer is observed and this may be linked to a change in two phase flow regime within the outlet pipe. A study by Baker et al [4] on transient effects in gas-liquid separation has shown pressure spikes during transitions to new equilibrium conditions for two-phase pipe flow where the gas flow rate is suddenly increased.

In this paper outlet visualisation, chamber visualisation and pressure data are combined and conclusions are drawn relating to the parameters controlling whether shear or gravity dominate. The effect of the chamber flow regime on the outlet flow regime is assessed and presented. An implication of the analysis is that during transitional conditions a bearing chamber may contain a different quantity of liquid than in steady state conditions.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In