Full Content is available to subscribers

Subscribe/Learn More  >

Investigation and Improvement of Thermal Efficiency of Hypersonic Scramjet

[+] Author Affiliations
Mohammad A. Hossain, Md. Taibur Rahman, Sarzina Hossain

University of Texas at El Paso, El Paso, TX

Mohammad Ikthair Hossain Soiket

McGill University, Montreal, QC, Canada

Paper No. IMECE2014-37385, pp. V001T01A045; 10 pages
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 1: Advances in Aerospace Technology
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4642-1
  • Copyright © 2014 by ASME


This work is focused on investigation of thermal efficiency of a Hypersonic scramjet engine and propose some improvement of thermal efficiency based on thermodynamic and fluid flow analysis. Thermal management system is one of the main research fields in scramjet design. As it has no moving parts, the total thermal efficiency depends on inlet conditions, conditions of combustor exit and conditions of the engine exit. A combustor exit condition dictates the velocity and temperature after combustion. we concentrate our focus on this section. The first part of the paper, we tried to describe the fundamental exergy relationship for scramjet and we developed the relation of exergy distribution and exergy delivery rate. From an extensive literature review, we have found the relations between fluid velocity, pressure and temperature, which is described in the later part of the paper. Our main focus is to develop a combined relation of thermal efficiency in terms of engine exit velocity, temperature and air-fuel ratio. Different characteristic parameters such as overall efficiency, thermal efficiency, specific impulse have been determined at different inlet temperature ratio or the cycle static temperature ratio (T3/T0) and an optimum inlet temperature ratio is proposed for maximum overall efficiency.

Copyright © 2014 by ASME
Topics: Scramjets



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In