0

Full Content is available to subscribers

Subscribe/Learn More  >

Application of a Morphing Wing Technology on Hydra Technologies Unmanned Aerial System UAS-S4

[+] Author Affiliations
Oliviu Şugar Gabor, Antoine Simon, Andreea Koreanschi, Ruxandra Botez

École de Technologie Supérieure, Montréal, QC, Canada

Paper No. IMECE2014-37619, pp. V001T01A037; 12 pages
doi:10.1115/IMECE2014-37619
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 1: Advances in Aerospace Technology
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4642-1
  • Copyright © 2014 by ASME

abstract

The paper describes the application of a morphing wing technology on the wing of an Unmanned Aerial System (UAS). The morphing wing concept works by replacing a part of the rigid wing upper and lower surfaces with a flexible skin whose shape can be dynamically changed using an actuation system placed inside the wing structure. The aerodynamic coefficients are determined using the fast and robust XFOIL panel/boundary-layer codes, as the optimal displacements are calculated using an original, in-house optimisation tool, based on a coupling between the relatively new Artificial Bee Colony Algorithm, and the classical, gradient-based Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. All the results obtained by the in-house optimisation tool have been validated using robust, commercially available optimization codes. Three different optimization scenarios were performed and promising results have been obtained for each. The numerical results have shown substantial aerodynamic performance increases obtained for different flight conditions, using the proposed morphing wing concept.

Copyright © 2014 by ASME
Topics: Wings

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In