0

Full Content is available to subscribers

Subscribe/Learn More  >

Combined Static and Dynamic Optimization of a Turbine Disk

[+] Author Affiliations
Li Jun, Fan Ning, Zhao Xuecheng

Beijing Power Machinery Institute, Beijing, China

Paper No. IMECE2014-38992, pp. V001T01A025; 5 pages
doi:10.1115/IMECE2014-38992
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 1: Advances in Aerospace Technology
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4642-1
  • Copyright © 2014 by ASME

abstract

Due to high working temperature and rotating speed, turbine disks are crucial parts in gas turbine engines. The weight of disks is always heavy in order to increase the reliability and structural integrity. So optimization design of disks could bring a significant reduction in engine weight. Focusing on a typical Low Pressure Turbine (LPT) disk, this paper improves its design in both static and dynamic characteristics with ANSYS Workbench platform. Based on a 2D parameterized model, the sensitivity of different structural parameters was investigated quickly. Then the optimization process to minimize the mass was conducted by NLPQL (Non-Linear Programming by Quadratic Lagrangian) method with 3D parameterized model. The equivalent stress of disk was limited in static optimization and resonance frequency was also restricted to a safe level through a Campbell diagram in dynamic optimization. A new design plan was acquired through optimization process, which reduces 13.6% of total weight under static and dynamic criteria.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In