Full Content is available to subscribers

Subscribe/Learn More  >

Crashworthy Landing Gear Design Using a Composite Tube by Extra Energy Absorber

[+] Author Affiliations
Tae-Uk Kim, Sung Joon Kim, Seunggyu Lee

Korea Aerospace Research Institute, Daejeon, Korea

Paper No. IMECE2014-36452, pp. V001T01A016; 6 pages
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 1: Advances in Aerospace Technology
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4642-1
  • Copyright © 2014 by ASME


Landing gear is the one of the key components for improving aircraft crashworthiness because its primary function is the energy absorption. But, in general, the shock absorbers are designed to have best efficiency for normal landing cases and can be ineffective when faced with very high sink speed. Thus special design and implementation are necessary for landing gear to have crashworthiness. For this purpose, various concepts have been studied and put to practical use such as structural pin, pressure relief valve and additional energy absorbing devices, etc. In this paper, the composite tube is investigated as an extra energy absorber and adopted to landing gear to increase shock absorbing performance in case of crash. To do this, first the quasi-static and impact test of composite tubes are conducted and the analysis model is tuned to explain the test results. During the correlation process, the failure modes and the specific energy absorption of the composite tubes are analyzed and the optimal configurations are searched.

The overall performance of landing gear including the composite tube is analyzed by developing a simplified dynamic model. Each force-stroke relation of oleo-pneumatic shock absorber, tire and composite tube are modeled as spring and damper, then the equation of motion is solved to obtain the crash responses. In this model, after the bottoming of shock absorber, the crushing of composite tube is activated for additional energy absorption. Numerical solutions show that the enhanced shock absorbing capability in case of crash when the composite tube adopted. For practical use, the landing gear performance should be verified by drop tests and this is author’s future research project.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In