0

Full Content is available to subscribers

Subscribe/Learn More  >

Energy Harvesting From Aeroelastic Instabilities for Highly Flexible Aircraft

[+] Author Affiliations
Zahra Sotoudeh

Rensselaer Polytechnic Institute, Troy, NY

Paper No. IMECE2014-36967, pp. V001T01A011; 3 pages
doi:10.1115/IMECE2014-36967
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 1: Advances in Aerospace Technology
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4642-1
  • Copyright © 2014 by ASME

abstract

Aeroelastic instabilities such as flutter, limit cycle oscillation (LCO), and divergence are traditionally considered undesirable. Designers try to avoid these instabilities by adding enough stiffness or damping to structures. A new approach to suppressing these instabilities is to use smart material to harvest energy from airflow. In this way not only are the aeroelastic instabilities avoided, but also some energy will be harvested. The harvested energy can be used for powering sensors, morphing parts of the structure, and ultimately increasing the performance of the aircraft. Energy harvesting from aeroelastic phenomena can also be used in designing small wind energy harvesters for home use. In this paper we will explore both capabilities. Piezoelectric materials are among the attractive smart materials for energy harvesting. Piezoelectric materials generate electric potential as they deform. We will explore the use of these materials in aeroelastic harvesting. Ref. 1 has a general overview of different forms of vibrational energy harvesting, including the use of piezoelectric materials. Harvesting energy from aeroelastic instabilities is a relatively new area; therefore, the body of literature on this subject is relatively young. Most of the analysis is limited to a 2-D cross-sectional analysis with steady or quasi-steady flow. We will use a 2-D model with an unsteady aerodynamic model as the preliminary result. More realistic cases with a beam model will be added to the final version of the paper. For the beam model, we will use fully intrinsic equations.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In