Full Content is available to subscribers

Subscribe/Learn More  >

On the Vortex Breakdown Phenomenon in High Angle of Attack Flows Over Delta Wing Geometries

[+] Author Affiliations
Eric D. Robertson, Varun Chitta, D. Keith Walters, Shanti Bhushan

Mississippi State University, Starkville, MS

Paper No. IMECE2014-39354, pp. V001T01A009; 9 pages
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 1: Advances in Aerospace Technology
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4642-1
  • Copyright © 2014 by ASME


Using computational methods, an investigation was performed on the physical mechanisms leading to vortex breakdown in high angle of attack flows over delta wing geometries. For this purpose, the Second International Vortex Flow Experiment (VFE-2) 65° sweep delta wing model was studied at a root chord Reynolds number (Recr) of 6 × 106 at various angles of attack. The open-source computational fluid dynamics (CFD) solver OpenFOAM was used in parallel with the commercial CFD solver ANSYS® FLUENT. For breadth, a variety of classic closure models were applied, including unsteady Reynolds-averaged Navier-Stokes (URANS) and detached eddy simulation (DES). Results for all cases are analyzed and flow features are identified and discussed. The results show the inception of a pair of leading edge vortices originating at the apex for all models used, and a region of steady vortical structures downstream in the URANS results. However, DES results show regions of massively separated helical flow which manifests after vortex breakdown. Analysis of turbulence quantities in the breakdown region gives further insight into the mechanisms leading to such phenomena.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In