0

Full Content is available to subscribers

Subscribe/Learn More  >

Exit Flow Vector Control on a Coanda Nozzle Using Dielectric Barrier Discharge Actuator

[+] Author Affiliations
José C. Páscoa, Frederico F. Rodrigues, Shyam S. Das, M. Abdollahzadeh

University of Beira Interior, Covilhã, Portugal

A. Dumas, Michele Trancossi, Maharshi Subhash

Università degli Studi Modena e Reggio-Emilia, Reggio-Emilia, Italy

Paper No. IMECE2014-38915, pp. V001T01A006; 8 pages
doi:10.1115/IMECE2014-38915
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 1: Advances in Aerospace Technology
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4642-1
  • Copyright © 2014 by ASME

abstract

The paper presents a study on a Coanda nozzle with applications in vectorized propulsion. The nozzle is able to change the exist flow angle as a function of a differential two-stream incoming flow rate. Herein we demonstrate that by using Dielectric Barrier Discharge actuators we are able to extend the range of attainable exit flow angles. First the analysis is performed using a numerical approach; afterwards an experimental facility is implemented to study this same effect. We include a comparison between the experimental testing on the Coanda thruster and CFD computations. Following an analysis of the results we demonstrate that it is possible to achieve a higher exit thrust angle, with the DBD plasma actuators active, and this is shown to be important in order to be able to keep the desired angles under several swirl velocities incoming from the feeding turbofans.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In