Ceramic Component Processing Development for Advanced Gas-Turbine Engines PUBLIC ACCESS

[+] Author Affiliations
B. J. McEntire, R. R. Hengst, W. T. Collins, A. P. Taglialavore, R. L. Yeckley, E. Bright, M. G. Bingham

Norton/TRW Ceramics, Northboro, MA

Paper No. 91-GT-120, pp. V005T13A008; 9 pages
  • ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award; General
  • Orlando, Florida, USA, June 3–6, 1991
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7902-3
  • Copyright © 1991 by ASME


Norton/TRW Ceramics (NTC) is performing ceramic component development as part of the DOE-sponsored Advanced Turbine Technology Applications Project (ATTAP). NTC’s work is directed at developing manufacturing technologies for rotors, stators, vane-seat platforms and scrolls. The first three components are being produced from a HIPed Si3N4, designated NT154. Scrolls were prepared from a series of siliconized silicon-carbide (Si-SiC) materials designated NT235 and NT230. Efforts during the first three years of this five-year program are reported. Developmental work has been conducted on all aspects of the fabrication process using Taguchi experimental design techniques. Appropriate materials and processing conditions were selected for powder beneficiation, densification and heat-treatment operations. Component forming has been conducted using thermal-plastic-based injection molding (IM), pressure slip-casting (PSC), and Quick-Set™ injection molding. An assessment of material properties for various components from each material and process were made. For NT154, characteristic room-temperature strengths and Weibull Moduli were found to be range between ≈920 MPa to ≈1 GPa and ≈10 to ≈19, respectively. Process-induced inclusions proved to be the dominant strength limiting defect regardless of the chosen forming method. Correction of the lower observed values is being addressed through equipment changes and upgrades. For the NT230 and NT235 Si-SiC, characteristic room-temperature strengths and Weibull Moduli ranged from ≈240 to ≈420 MPa, and 8 to 10, respectively. At 1370°C, strength values for both the HIPed Si3N4 and the Si-SiC materials ranged from ≈480 MPa to ≈620 MPa. The durability of these materials as engine components is currently being evaluated.

Copyright © 1991 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In