Stability Analysis of Bridged Cracks in Brittle Matrix Composites PUBLIC ACCESS

[+] Author Affiliations
Roberto Ballarini, Sandeep Muju

Case Western Reserve University, Cleveland, OH

Paper No. 91-GT-094, pp. V005T13A005; 13 pages
  • ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award; General
  • Orlando, Florida, USA, June 3–6, 1991
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7902-3
  • Copyright © 1991 by ASME


The bridging of matrix cracks by fibers is an important toughening mechanism in fiber reinforced brittle matrix composites. This paper presents the results of a non-linear finite element analysis of the Mode-I propagation of a bridged matrix crack in a finite size specimen. The composite is modeled as an orthotropic continuum and the bridging due to the fibers is modeled as a distribution of tractions which resist crack opening. A critical stress intensity factor criterion is employed for matrix crack propagation while a critical crack opening condition is used for fiber failure. The structural response of the specimen (load-deflection curves) as well as the stress intensity factor of the propagating crack are calculated for various constituent properties and specimen configurations for both tensile and bending loading. By controlling the length of the bridged crack results are obtained which highlight the transition from stable to unstable behavior of the propagating crack.

Copyright © 1991 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In