0

Development of an Innovative High-Temperature Gas Turbine Fuel Nozzle FREE

[+] Author Affiliations
G. D. Myers, J. P. Armstrong, C. D. White

Allied-Signal Aerospace, Phoenix, AZ

S. Clouser

Naval Air Propulsion Center, Trenton, NJ

R. J. Harvey

Delavan, Inc., West Des Moines, IA

Paper No. 91-GT-036, pp. V003T06A001; 8 pages
doi:10.1115/91-GT-036
From:
  • ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Orlando, Florida, USA, June 3–6, 1991
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7900-9
  • Copyright © 1991 by ASME

abstract

The objective of the Innovative High-Temperature Fuel Nozzle Program was to design, fabricate, and test propulsion engine fuel nozzles capable of performance despite extreme fuel and air inlet temperatures. Although a variety of both passive and active methods for reducing fuel wetted-surface temperatures were studied, simple thermal barriers were found to offer the best combination of operability, cycle flexibility, and performance. A separate nozzle material study examined several nonmetallics and coating schemes for evidence of passivating or catalytic tendencies. Two pilotless airblast nozzles were developed by employing finite-element modeling to optimize thermal barriers in the stem and tip. Operability of these prototypes was compared to a current state-of-the-art piloted, prefilming airblast nozzle, both on the spray bench and through testing in a can-type combustor. The three nozzles were then equipped with internal thermocouples and operated at 1600F air inlet temperature while injecting marine diesel fuel heated to 350F. Measured and predicted internal temperatures as a function of fuel flow rate were compared. Results show that the thermal barrier systems dramatically reduced wetted-surface temperatures and the potential for coke fouling, even in an extreme environment.

Copyright © 1991 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In