0

Separating Hydrogen From Coal Gasification Gases With Alumina Membranes FREE

[+] Author Affiliations
B. Z. Egan

Oak Ridge National Laboratory, Oak Ridge, TN

D. E. Fain, G. E. Roettger, D. E. White

Technical Division, Oak Ridge, TN

Paper No. 91-GT-132, pp. V003T05A001; 5 pages
doi:10.1115/91-GT-132
From:
  • ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Orlando, Florida, USA, June 3–6, 1991
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7900-9
  • Copyright © 1991 by ASME

abstract

Synthesis gas produced in coal gasification processes contains hydrogen, along with carbon monoxide, carbon dioxide, hydrogen sulfide, water, nitrogen, and other gases, depending on the particular gasification process. Development of membrane technology to separate the hydrogen from the raw gas at the high operating temperatures and pressures near exit gas conditions would improve the efficiency of the process.

Tubular porous alumina membranes with mean pore radii ranging from about 9 to 22 A have been fabricated and characterized. Based on the results of hydrostatic tests, the burst strength of the membranes ranged from 800 to 1600 psig, with a mean value of about 1300 psig. These membranes were evaluated for separating hydrogen and other gases.

Tests of membrane permeabilities were made with helium, nitrogen, and carbon dioxide. Measurements were made at room temperature in the pressure range of 15 to 589 psi. In general, the relative gas permeabilities correlated qualitatively with a Knudsen flow mechanism; however, other gas transport mechanisms such as surface adsorption may also be involved.

Efforts are under way to fabricate membranes having still smaller pores. At smaller pore sizes, higher separation factors are expected from molecular sieving effects.

Copyright © 1991 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In