Impact Design Methods for Ceramic Components in Gas Turbine Engines PUBLIC ACCESS

[+] Author Affiliations
J. Song, J. Cuccio, H. Kington

Allied-Signal Aerospace Company, Phoenix, AZ

Paper No. 91-GT-115, pp. V002T04A003; 9 pages
  • ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 2: Aircraft Engine; Marine; Microturbines and Small Turbomachinery
  • Orlando, Florida, USA, June 3–6, 1991
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7899-6
  • Copyright © 1991 by ASME


Garrett Auxiliary Power Division of Allied-Signal Aerospace Company is developing methods to design ceramic turbine components with improved impact resistance. In an ongoing research effort under the DOE/NASA-funded Advanced Turbine Technology Applications Project (ATTAP), two different modes of impact damage have been identified and characterized: Local damage and structural damage.

Local impact damage to Si3N4 impacted by spherical projectiles usually takes the form of ring and/or radial cracks in the vicinity of the impact point. Baseline data from Si3N4 test bars impacted by 1.588 mm (0.0625 inch) diameter NC-132 projectiles indicates the critical velocity at which the probability of detecting surface cracks is 50 percent equalled 130 m/sec (426 ft/sec). A microphysics-based model that assumes damage to be in the form of microcracks has been developed to predict local impact damage. Local stress and strain determine microcrack nucleation and propagation, which in turn alter local stress and strain through modulus degradation. Material damage is quantified by a “damage parameter” related to the volume fraction of microcracks. The entire computation has been incorporated into the EPIC computer code. Model capability is being demonstrated by simulating instrumented plate impact and particle impact tests.

Structural impact damage usually occurs in the form of fast fracture caused by bending stresses that exceed the material strength. The EPIC code has been successfully used to predict radial and axial blade failures from impacts by various size particles. This method is also being used in conjunction with Taguchi experimental methods to investigate the effects of design parameters on turbine blade impact resistance. It has been shown that significant improvement in impact resistance can be achieved by using the configuration recommended by the Taguchi methods.

Copyright © 1991 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In