Current Status of Industrial and Automotive Ceramic Gas Turbine R&D in Japan PUBLIC ACCESS

[+] Author Affiliations
Soichi Nagamatsu, Kazuyuki Mizuhara

Moonlight Project Promotion Office, AIST-MITI

Yukio Matsuda

National Aerospace Laboratory, STA

Akio Iwanaga

Development Organization (NEDO)

Shoji Ishiwata

Japan Automobile Research Institute, Inc. (JARI)

Paper No. 91-GT-101, pp. V002T04A002; 6 pages
  • ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 2: Aircraft Engine; Marine; Microturbines and Small Turbomachinery
  • Orlando, Florida, USA, June 3–6, 1991
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7899-6
  • Copyright © 1991 by ASME


The current status of Japan’s national Ceramic Gas Turbines (CGTs) projects is overviewed.

The Japanese Ministry of International Trade and Industry (MITI) is conducting two national R&D projects on CGT. These include a project on 300kW industrial CGTs for co-generation and mobile power generation use and a project on 100kW CGT for automotive use.

The 300kW project was started in 1988, and is scheduled to develop three kinds of CGTs over nine years. The New Energy and Industrial Technology Development Organization (NEDO) is the main contractor, and three groups of private industries are sub contractors. Three national research institutes are involved in the project to conduct supportive research of ceramic materials and engine components.

The 100kW project has started in 1990, and is scheduled to develop a single shaft automotive CGT over seven years. Petroleum Energy Center (PEC) and JARI are the main contractors with the cooperation of several petroleum and automotive companies.

The goals for the two projects are 42% and higher for thermal efficiency at a turbine inlet temperature of 1350C. Such targets could not be achieved without applying high temperature ceramics to the engine components. Therefore many R&D objectives are directed towards developing the ceramic components which have a higher flexure strength and fracture toughness.

Currently, 300kW base metal gas turbine engines are being developed to prove the design concepts. Blade shapes suitable to ceramics are being studied by the FEM method. Forming and manufacturing large components are also being studied, and some ceramics components have been successfully made.

Copyright © 1991 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In