Measurement and Prediction of Heat Transfer From Compressor Discs With a Radial Inflow of Cooling Air PUBLIC ACCESS

[+] Author Affiliations
P. R. Farthing, C. A. Long, R. H. Rogers

University of Sussex, Brighton, UK

Paper No. 91-GT-053, pp. V001T01A014; 13 pages
  • ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 1: Turbomachinery
  • Orlando, Florida, USA, June 3–6, 1991
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7898-9
  • Copyright © 1991 by ASME


An integral theory is used to model the flow, and predict heat transfer rates, for corotating compressor discs with a superposed radial inflow of air. Measurements of heat transfer are also made, both in an experimental rig and in an engine.

The flow structure comprises source and sink regions, Ekman-type layers and an inviscid central core. Entrainment occurs in the source region, the fluid being distributed into the two nonentraining Ekman-type layers. Fluid leaves the cavity via the sink region.

The integral model is validated against the experimental data, although there are some uncertainties in modelling the exact thermal conditions of the experiment. The magnitude of the Nusselt numbers is affected by the rotational Reynolds number and dimensionless flowrate; the maximum value of Nu is found to occur near the edge of the source region.

The heat transfer measurements using the engine data show acceptable agreement with theory and experiment. This is very encouraging considering the large levels of uncertainty in the engine data.

Copyright © 1991 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In