0

A Study of Rotor Cavities and Heat Transfer in a Cooling Process in a Gas Tubine PUBLIC ACCESS

[+] Author Affiliations
R. S. Amano, V. Pavelic

The University of Wisconsin, Milwaukee, WI

Paper No. 92-GT-358, pp. V004T09A030; 8 pages
doi:10.1115/92-GT-358
From:
  • ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration
  • Cologne, Germany, June 1–4, 1992
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7896-5
  • Copyright © 1992 by ASME

abstract

A high temperature flow through a gas-turbine produces a high rate of turbulent heat transfer between the fluid flow field and the turbine components. The heat transfer process through rotor disks causes thermal stress due to the thermal gradient as well as the centrifugal force causes mechanical stresses; thus an accurate analysis for the evaluation of thermal behavior is needed. This paper presents a numerical study of thermal flow analysis in a two-stage turbine in order to better understand the detailed flow and heat transfer mechanisms through the cavity and the rotating rotor-disks. The numerical computations were performed to predict thermal fields throughout the rotating disks. The method used in this paper is the ‘segregation’ method which requires a much smaller number of grids than actually employed in the computations. The results are presented for temperature distributions through the disk and the velocity fields which illustrate the interaction between the cooling air flow and gas flow created by the disk rotation. The temperature distribution in the disks shows a reasonable trend. The numerical method developed in this study shows that it can be easily adapted for similar computations for air cooling flow patterns through any rotating blade disks in a gas turbine.

Copyright © 1992 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In