0

The Effect of a Turbulent Wake on the Stagnation Point: Part II — Heat Transfer Results FREE

[+] Author Affiliations
Anthony J. Hanford, Dennis E. Wilson

The University of Texas, Austin, TX

Paper No. 92-GT-197, pp. V004T09A014; 12 pages
doi:10.1115/92-GT-197
From:
  • ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration
  • Cologne, Germany, June 1–4, 1992
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7896-5
  • Copyright © 1992 by ASME

abstract

A phenomenological model is proposed which relates the effects of freestream turbulence to the increase in stagnation point heat transfer. The model requires both turbulence intensity and energy spectra as inputs to the unsteady velocity at the edge of the boundary layer. The form of the edge velocity contains both a pulsation of the incoming flow and an oscillation of the streamlines. The incompressible unsteady and time-averaged boundary layer response is determined by solving the momentum and energy equations. The model allows for arbitrary two-dimensional geometry, however, results are given only for a circular cylinder. The time-averaged Nusselt number is determined theoretically and compared to existing experimental data.

Copyright © 1992 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In