0

Structure of a Hollow-Cone Spray With and Without Combustion FREE

[+] Author Affiliations
B. Chehroudi, M. Ghaffarpour

University of Illinois, Chicago, IL

Paper No. 92-GT-124, pp. V003T06A021; 12 pages
doi:10.1115/92-GT-124
From:
  • ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Cologne, Germany, June 1–4, 1992
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7895-8
  • Copyright © 1992 by ASME

abstract

A hollow-cone spray with a nominal cone angle of 30 degrees from a pressure-swirl fuel atomizer was used in a swirl-stabilized combustor. The combustor is circular in cross section, with a swirl plate and fuel nozzle axis coinciding with the axes of the chamber. kerosene is injected upward inside the chamber from the fuel nozzle. Separate swirl and dilution air flows are distributed into the chamber that pass through honeycomb flow straighteners and screens. A calculated swirl number of 1.5 is generated with the design swirl plate exit air velocity of 30 degrees with respect to the chamber axis. Effects of swirl and dilution air flow rates on the shape and stability of the flame are investigated. A Phase Doppler Particle Analyzer (PDPA) is used to measure drop size, mean and rms values of axial drop velocity, fuel volume flux, drop velocity and size distributions, and size-classified drop velocity profiles for two cases of with and without combustion and at six different axial locations from the nozzle. For the no-combustion case all air and fuel flow rates were kept at the same values as the combusting spray condition. Results for mean axial drop velocity profiles indicate widening of the spray, with slight increase in the magnitudes of the peak drop velocities due to combustion. Root mean square (RMS) values of drop velocity fluctuations decrease due to a combination of increase in gas kinematic viscosity and elimination of small drops at high temperatures. Sauter mean diameter (SMD) radial profiles at all axial locations increase with combustion due to preferential burning of small drops. Fuel volume flux profiles indicate negligible drop vaporization and/or burning up to a distance of 25mm from the nozzle. Velocity number distributions at different radial points for without combustion at an axial distance of 55mm from the atomizer are symmetric in shape only close to the peak of the mean drop velocity and show a bimodal shape around the maximum mean drop axial velocity gradient. Corresponding number distributions for the combustion case are fairly symmetric and quite different in behavior at all radial positions. Size-classified drop velocity profiles are also plotted and discussed.

Copyright © 1992 by ASME
Topics: Combustion , Sprays
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In