0

Studies of Jet Thermal Stability in a Flowing System FREE

[+] Author Affiliations
S. P. Heneghan, C. R. Martel, T. F. Williams, D. R. Ballal

University of Dayton, Dayton, OH

Paper No. 92-GT-106, pp. V003T06A003; 7 pages
doi:10.1115/92-GT-106
From:
  • ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Cologne, Germany, June 1–4, 1992
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7895-8
  • Copyright © 1992 by ASME

abstract

A flowing, single-pass heat exchanger test rig, with a fuel capacity of 189 litres, has been developed to evaluate jet fuel thermal stability. This so called, “Phoenix Rig” is capable of supplying jet fuel to a 2.15 mm I.D. tube at a pressure up to 3.45 MPa, fuel temperature up to 900K, and a fuel-tube Reynolds number in the range 300–11,000. Using this test rig, fuel thermal stability (carbon deposition rate), dissolved oxygen consumption, and methane production were measured for three baseline jet fuels and three fuels blended with additives. Such measurement were performed under oxygen-saturation or oxygen-starved conditions.

Tests with all of the blended fuel samples showed a noticeable improvement in fuel thermal stability. Both block temperature and test duration increased the total carbon deposits in a nonlinear fashion. Interestingly, those fuels that need a higher threshold temperature to force the consumption of oxygen exhibited greater carbon deposits than those that consume oxygen at a lower temperature. These observations suggested a complicated relationship between the formation of carbon deposits and the temperature-driven consumption of oxygen. A simple analysis, based on a bi-molecular reaction rate, correctly accounted for the shape of the oxygen consumption curve for various fuels. This analysis yielded estimates of global bulk parameters of oxygen consumption. The test rig yielded quantitative results which will be very useful in evaluating fuel additives, understanding the chemistry of deposit formation, and eventually developing a global chemistry model.

Copyright © 1992 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In