0

Computed Effects of Rim Seal Clearance and Cavity Width on Thermal Distributions PUBLIC ACCESS

[+] Author Affiliations
S. H. Ko, D. L. Rhode, Z. Guo

Texas A&M University, College Station, TX

Paper No. 93-GT-419, pp. V03CT17A080; 8 pages
doi:10.1115/93-GT-419
From:
  • ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 3C: General
  • Cincinnati, Ohio, USA, May 24–27, 1993
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7892-7
  • Copyright © 1993 by ASME

abstract

Axisymmetric solutions of the Reynolds averaged Navier-Stokes equations were obtained for the complete momentum/thermal interaction at the interface between the turbine hot mainstream and rim seal flow regions. Specifically, the 2-D, axisymmetric, fully elliptic form of the equations was solved in order to obtain detailed insight concerning the effect of the rim seal clearance and cavity width on the disk temperature, gap recirculation zone GRZ and rotational drag. The mainstream and purge flow rates, pressures and temperatures were selected to match those of a typical commercial engine. The details of seven generic geometries, consisting of different seal clearance gaps and different cavity widths, for each of several cooling flow rates are analyzed.

Of particular interest is the result that halving the engine nominal axial clearance of the generic rim seal is not sufficient for preventing the appearance of the GRZ. However, reducing this clearance to 25% of the nominal value does prevent its formation, and in that case the coolant flow continues outward along the disk surface through the rim seal region.

In addition, the first-order characteristics of: (a) the heat transport in the rim seal region and (b) the disk temperature rise due to thermal transport via the rim seal (gap) recirculation zone and via disk frictional heating were illuminated. Further, it is concluded that smaller seal clearances are desirable for reducing rotational drag as well as purge flow rates.

Copyright © 1993 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In