0

GETRAN: A Generic, Modularly Structured Computer Code for Simulation of Dynamic Behavior of Aero- and Power Generation Gas Turbine Engines PUBLIC ACCESS

[+] Author Affiliations
T. Schobeiri, M. Abouelkheir, C. Lippke

Texas A&M University, College Station, TX

Paper No. 93-GT-388, pp. V03CT17A049; 14 pages
doi:10.1115/93-GT-388
From:
  • ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 3C: General
  • Cincinnati, Ohio, USA, May 24–27, 1993
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7892-7
  • Copyright © 1993 by ASME

abstract

The design concept, the theoretical background essential for the development of the modularly structured simulation code GETRAN, and several critical simulation cases are presented in this paper. The code being developed under contract with NASA Lewis Research Center is capable of simulating the nonlinear dynamic behavior of single- and multi-spool core engines, turbofan engines, and power generation gas turbine engines under adverse dynamic operating conditions. The modules implemented into GETRAN correspond to components of existing and new generation aero- and stationary gas turbine engines with arbitrary configuration and arrangement. For precise simulation of turbine and compressor components, row-by-row diabatic and adiabatic calculation procedures are implemented that account for the specific turbine and compressor cascade, blade geometry, and characteristics. The nonlinear, dynamic behavior of the subject engine is calculated solving a number of systems of partial differential equations, which describe the unsteady behavior of each component individually. To unambiguously identify each differential equation system, special attention is paid to the addressing of each component. The code is capable of executing the simulation procedure at four levels which increase with the degree of complexity of the system and dynamic event. As representative simulations, four different transient cases with single- and multi-spool thrust and power generation engines were simulated. These transient cases vary from throttling the exit nozzle area, operation with fuel schedule, rotor speed control, to rotating stall and surge.

Copyright © 1993 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In