0

An Assessment of the Thermodynamic Performance of Mixed Gas-Steam Cycles: Part A — Intercooled and Steam-Injected Cycles FREE

[+] Author Affiliations
Ennio Macchi, Stefano Consonni, Giovanni Lozza, Paolo Chiesa

Politecnico di Milano, Milan, Italy

Paper No. 94-GT-423, pp. V004T10A017; 12 pages
doi:10.1115/94-GT-423
From:
  • ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration
  • The Hague, Netherlands, June 13–16, 1994
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7886-6
  • Copyright © 1994 by ASME

abstract

This paper discusses the thermodynamics of power cycles where steam or water are mixed with air (or combustion gases) to improve the performance of stationary gas turbine cycles fired on clean fuels. In particular, we consider cycles based on modified versions of modern, high-performance, high-efficiency aero-derivative engines.

The paper is divided into two parts. After a brief description of the calculation method, in Part A we review the implications of intercooling and analyze cycles with steam injection (STIG and ISTIG). In Part B we examine cycles with water injection (RWI and HAT).

Due to lower coolant temperatures, intercooling enables to reduce turbine cooling flows and/or to increase the turbine inlet temperature. Results show that this can provide significant power and efficiency improvements for both simple cycle and combined cycle systems based on aero-engines; systems based on heavy-duty machines also experience power output augmentation, but almost no efficiency improvement.

Mainly due to the irreversibilities of steam/air mixing, intercooled steam injected cycles cannot achieve efficiencies beyond the 52–53% range even at turbine inlet temperatures of 1500°C. On the other hand, by accomplishing more reversible water-air mixing, the cycles analyzed in Part B can reach efficiencies comparable (RWI cycles) or even superior (HAT cycles) to those of conventional “unmixed” combined cycles.

Copyright © 1994 by ASME
Topics: Cycles , Steam
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In