System Optimization of Humid Air Turbine Cycle FREE

[+] Author Affiliations
Yunhan Xiao, Rumou Lin, Ruixian Cai

Chinese Academy of Sciences, Beijing, China

Paper No. 94-GT-240, pp. V004T10A003; 7 pages
  • ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration
  • The Hague, Netherlands, June 13–16, 1994
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7886-6
  • Copyright © 1994 by ASME


The humid air turbine (HAT) cycle, proposed by Mori et al. and recently developed by Rao et al. at Flour Daniel, has been identified as a promising way to generate electric power at high efficiency, low cost and simple system relative to combined cycle and steam injection gas turbine cycle. It has aroused considerable interest.

Thermodynamic means, such as intercooling, regeneration, heat recovery at low temperature and especially non-isothermal vaporisation by multi-phase and multi-component, are adopted in HAT cycle to reduce the external and internal exergy losses relative to the energy conversion system. In addition to the parameter analysis and the technical aspect of HAT cycle, there is also a strong need for “systems” research to identify the best ways, of configuring HAT cycle to integrate all the thermodynamic advantages more efficiently to achieve high performance.

The key units in HAT cycle are analyzed thermodynamically and modelled in this paper. The superstructure containing all potentially highly efficient flowsheeting alternatives is also proposed. The system optimization of the HAT cycle is thus represented by a nonlinear programming problem. The problem is solved automatically by a successive quadratic algorithm to select the optimal configuration and optimal design parameters for the HAT cycle.

The results have shown that the configuration of the HAT cycle currently adopted is not optimal for efficiency and/or specific power, and the current pressure ratio are too high to be favorable for highest performance. Based on the current technical practice, the optimal flowsheeting for thermal efficiency can reach 60.33% when TIT=1533K, while the optimal flowsheeting for specific power can achieve 1300kW/kg/s air for TIT at 1533K. The optimal flowsheeting configuration is compared favorably with the other existing ones.

Copyright © 1994 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In