0

Effects of Leading-Edge Roughness on Fluid Flow and Heat Transfer in the Transitional Boundary Layer Over a Flat Plate FREE

[+] Author Affiliations
Mark Pinson, Ting Wang

Clemson University, Clemson, SC

Paper No. 94-GT-326, pp. V004T09A050; 11 pages
doi:10.1115/94-GT-326
From:
  • ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration
  • The Hague, Netherlands, June 13–16, 1994
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7886-6
  • Copyright © 1994 by ASME

abstract

An experimental study was undertaken to gain insight into the physical mechanisms that affect the laminar-turbulent transition process downstream of the leading-edge roughness condition. Three sizes of sandpaper strips were chosen to simulate the randomly distributed roughness located near the leading edge of a turbine blade, and three sizes of cylinders were chosen to simulate the relatively isolated peak nature of the roughness structure. The roughness Reynolds numbers tested covered a wide range, from 2 to 2840. The roughness sizes were selected based on the measured roughness characteristics of used gas turbine blades. The results indicated that at low free-stream velocities (5 m/s), the maximum roughness height was the primary contributor to deviations from the undisturbed case. At higher free-stream velocities (5–7 m/s), three of the rough leading-edge conditions exhibited a dual-slope region between the laminar and turbulent Stanton number versus Reynolds number correlations. Analysis of the boundary layer indicated that the first segment of the dual-slope was laminar, but the wall heat transfer significantly deviates from the laminar correlation. The second segment was transitional. The dual-slope behavior and the waviness of the Stanton number distribution at higher free-stream velocities observed downstream of the rough leading-edge conditions are believed to have been caused by nonlinear amplification introduced by the finite disturbances at the leading edge.

Copyright © 1994 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In