0

Turbulence Measurements in a Heated, Concave Boundary Layer Under High Free-Stream Turbulence Conditions FREE

[+] Author Affiliations
Michael D. Kestoras

University of Nantes, Nantes, France

Terrence W. Simon

University of Minnesota, Minneapolis, MN

Paper No. 94-GT-037, pp. V004T09A010; 9 pages
doi:10.1115/94-GT-037
From:
  • ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration
  • The Hague, Netherlands, June 13–16, 1994
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7886-6
  • Copyright © 1994 by ASME

abstract

Turbulence measurements for both momentum and heat transfer are taken in a low-velocity, turbulent boundary layer growing naturally over a concave wall. The experiments are conducted with negligible streamwise acceleration and a nominal free-stream turbulence intensity of −8%. Comparisons are made with data taken in an earlier study in the same test facility but with a 0.6% free-stream turbulence intensity. Results show that elevated free-stream turbulence intensity enhances turbulence transport quantities like uv and vt in most of the boundary layer. In contrast to the low-turbulence cases, high levels of transport of momentum are measured outside the boundary layer. Stable, Görtler-like vortices, present in the flow under low-turbulence conditions, do not form when the free-stream turbulence intensity is elevated. Turbulent Prandtl numbers, Prt, within the log region of the boundary layer over the concave wall increase with streamwise distance to values as high as 1.2. Profiles of Prt suggest that the increase in momentum transport with increased free-stream turbulence intensity precedes the increase in heat transport. Distributions of near-wall mixing length for momentum remain unchanged on the concave wall when free-stream turbulence intensity is elevated. Both for this level of free-stream turbulence and for the lower level, mixing length distributions increase linearly with distance from the wall following the standard slope. However when free-stream turbulence intensity is elevated, this linear region extends farther into the boundary layer, indicating the emerging importance of larger eddies in the wake of the boundary layer with the high-turbulence free-stream. Because these eddies are damped by the wall, the influence of the wall grows with eddy size.

Copyright © 1994 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In