CADDMAS: A Real-Time Parallel System for Dynamic Data Analysis PUBLIC ACCESS

[+] Author Affiliations
Thomas F. Tibbals

Sverdrup Technology, Inc., Arnold Air Force Base, TN

Theodore A. Bapty, Ben A. Abbott

Vanderbilt University, Nashville, TN

Paper No. 94-GT-194, pp. V002T02A004; 11 pages
  • ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 2: Aircraft Engine; Marine; Microturbines and Small Turbomachinery
  • The Hague, Netherlands, June 13–16, 1994
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7884-2
  • Copyright © 1994 by ASME


Arnold Engineering Development Center (AEDC) has designed and built a high-speed data acquisition and processing system for real-time online dynamic data monitoring and analysis. The Computer Assisted Dynamic Data Monitoring and Analysis System (CADDMAS) provides 24 channels at high frequency and another 24 channels at low frequency for online real-time aeromechanical, vibration, and performance analysis of advanced turbo-engines and other systems. The system is primarily built around two different parallel processors and several PCs to demonstrate hardware independence and architecture scalability. These processors provide the computational power to display online and in real-time what can take from days to weeks using existing offline techniques. The CADDMAS provides online test direction and immediate hardcopy plots for critical parameters, all the while providing continuous health monitoring through parameter limit checking. Special in-house developed Front End Processors (FEP) sample the dynamic signals, perform anti-aliasing, signal transfer function correction, and bandlimit filtering to improve the accuracy of the time domain signal. A second in-house developed Numeric Processing Element (NPE) performs the FFT, threshold monitoring, and packetizes the data for rapid asynchronous access by the parallel network. Finally, the data are then formatted for display, hardcopy plotting, and cross-channel processing within the parallel network utilizing off-the-shelf hardware. The parallel network is a heterogeneous message-passing parallel pipeline configuration which permits easy scaling of the system. Advanced parallel processing scheduler/controller software has been adapted specifically for CADDMAS to allow quasi-dynamic instantiation of a variety of simultaneous data processing tasks concurrent with display and alarm monitoring functions without gapping the data. Although many applications of CADDMAS exist, this paper describes the features of CADDMAS, the development approach, and the application of CADDMAS for turbine engine aeromechanical testing.

Copyright © 1994 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In