0

Experimental and Computational Results From the Nasa Lewis Low-Speed Centrifugal Impeller at Design and Part Flow Conditions PUBLIC ACCESS

[+] Author Affiliations
Randall M. Chriss, Jerry R. Wood

NASA Lewis Research Center, Cleveland, OH

Michael D. Hathaway

U.S. Army Research Laboratory, Cleveland, OH

Paper No. 94-GT-213, pp. V001T01A076; 14 pages
doi:10.1115/94-GT-213
From:
  • ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 1: Turbomachinery
  • The Hague, Netherlands, June 13–16, 1994
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7883-5
  • Copyright © 1994 by ASME

abstract

The NASA Lewis Low-Speed Centrifugal Compressor (LSCC) has been investigated with laser anemometry and computational analysis at two flow conditions: the design condition as well as a lower mass flow condition. Previously reported experimental and computational results at the design condition are in the literature (Hathaway et al. 1993). In that paper extensive analysis showed that inducer blade boundary layers are centrifuged outward and entrained into the tip clearance flow and hence contribute significantly to the throughflow wake. In this report results are presented for a lower mass flow condition along with further results from the design case.

The data set contained herein consists of three-dimensional laser velocimeter results upstream, inside and downstream of the impeller. In many locations data have been obtained in the blade and endwall boundary layers. The data are presented in the form of throughflow velocity contours as well as secondary flow vectors.

The results reported herein illustrate the effects of flow rate on the development of the throughflow momentum wake as well as on the secondary flow. The computational results presented confirm the ability of modern computational tools to accurately model the complex flow in a subsonic centrifugal compressor. However, the blade tip shape and tip clearance must be known in order to properly simulate the flow physics. In addition, the ability to predict changes in the throughflow wake, which is largely fed by the tip clearance flow, as the impeller is throttled should give designers much better confidence in using computational tools to improve impeller performance.

Copyright © 1994 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In