Computation and Simulation of Wake-Generated Unsteady Pressure and Boundary Layers in Cascades: Part 2 — Simulation of Unsteady Boundary Layer Flow Physics PUBLIC ACCESS

[+] Author Affiliations
S. Fan, B. Lakshminarayana

Pennsylvania State University, University Park, PA

Paper No. 94-GT-141, pp. V001T01A051; 16 pages
  • ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 1: Turbomachinery
  • The Hague, Netherlands, June 13–16, 1994
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7883-5
  • Copyright © 1994 by ASME


The unsteady pressure and boundary layers on a turbomachinery blade row arising from periodic wakes due to upstream blade rows are investigated in this paper. Numerical simulations are carried out to understand the effects of the wake velocity defect and the wake turbulence intensity on the development of unsteady blade boundary layers. The boundary layer transition on the blade is found to be strongly influenced by the unsteady wake passing. Periodic transitional patches are generated by the high turbulence intensity in the passing wakes and transported downstream. The time dependent transition results in large unsteadiness in the instantaneous local skin friction coefficient and a smoother time averaged transition curve than the one observed in the steady boundary layer. A parametric study is then carried out to determine the influence of wake parameters on the development of the unsteady blade boundary layers. It is shown that the unsteadiness in the blade boundary layer increases with a decrease in the axial gap, an increase in wake/blade count ratio or an increase in the wake traverse speed. The time averaged boundary layer momentum thickness at the trailing edge of the blade is found to increase significantly for higher wake/blade count ratio and larger wake traverse speed. Increase of the wake/blade count ratio also results in higher frictional drag of the blade.

Copyright © 1994 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In