An Experimental and Numerical Study of the Isothermal Flowfield Behind a Bluff Body Flameholder PUBLIC ACCESS

[+] Author Affiliations
Charbel N. Raffoul, Abdollah S. Nejad

Aero Propulsion and Power Directorate, Wright-Patterson AFB, OH

Richard D. Gould

North Carolina State University, Raleigh, NC

S. Alan Spring

CFD Research Corp., Huntsville, AL

Paper No. 95-GT-102, pp. V003T06A016; 15 pages
  • ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Houston, Texas, USA, June 5–8, 1995
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7880-4
  • Copyright © 1995 by ASME


An experimental and numerical investigation was conducted to study the turbulent velocities and stresses behind a 2-D bluff body. Simultaneous three-component laser Doppler velocimeter (LDV) measurements were made in the isothermal incompressible turbulent flowfield downstream of a bluff body placed at midstream in a rectangular test section. Mean velocities and Reynolds stresses were measured at various axial positions. Spanwise velocity measurements indicated that the flow is three dimensional in the recirculation zone of the bluff body. Confidence in the accuracy of the data was gained by calculating the mass fluxes at each axial station. These were found to agree with each other to within ±3%. A parallel Computational Fluid Dynamics (CFD) study was initiated to gauge the predictive accuracy of currently available CFD techniques. Three solutions were computed: a 2-D steady-state solution using the standard k-ε model, a 2-D time-accurate solution using the standard k-ε model, and a 2-D time-accurate solution using a Renormalized-Group (RNG) k-ε turbulence model. The steady-state solution matched poorly with the data, severely underpredicting the Reynolds stresses in the recirculation zone. The time-accurate solutions captured the unsteady vortex shedding from the base of the bluff body, providing a source for the higher Reynolds stresses. The RNG k-ε solution provided the best match to the data.

Copyright © 1995 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In