The Influence of Large Scale, High Intensity Turbulence on Vane Aerodynamic Losses, Wake Growth, and the Exit Turbulence Parameters FREE

[+] Author Affiliations
Forrest E. Ames

Allison Engine Company, Indianapolis, IN

Michael W. Plesniak

Purdue University, West Lafayette, IN

Paper No. 95-GT-290, pp. V001T01A076; 13 pages
  • ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 1: Turbomachinery
  • Houston, Texas, USA, June 5–8, 1995
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7878-1
  • Copyright © 1995 by ASME


An experimental research program was undertaken to examine the influence of large-scale high, intensity turbulence on vane exit losses, wake growth, and exit turbulence characteristics. The experiment was conducted in a four vane linear cascade at an exit Reynolds number of 800, 000 based on chord length and an exit Mach number of 0.27. Exit measurements were made for four inlet turbulence conditions including a low turbulence case (Tu ≈ 1%), a grid-generated turbulence case (Tu ≈ 7.5%), and two levels of large-scale turbulence generated with a mock combustor (Tu ≈ 12% & Tu ≈ 8%).

Exit total pressure surveys were taken at two locations to quantify total pressure losses. The suction surface boundary layer was also traversed to determine losses due boundary layer growth. Losses were also found in the core of the flow for the elevated turbulence cases.

The elevated free stream turbulence was found to have a significant effect on wake growth. Generally, the wakes subjected to elevated free stream turbulence were broader and had smaller peak velocity deficits. Reynolds stress profiles exhibited asymmetry in peak amplitudes about the wake centerline, which are attributable to differences in the evolution of the boundary layers on the pressure and suction surfaces of the vanes.

The overall level of turbulence and dissipation inside the wakes and in the free stream was determined to document the rotor inlet boundary conditions. This is useful information for assessing rotor heat transfer and aerodynamics. Eddy diffusivities and mixing lengths were estimated using X-wire measurements of turbulent shear stress. The free stream turbulence was found to strongly affect eddy diffusivities, and thus wake mixing. At the last measuring position, the average eddy diffusivity in the wake of the high turbulence close combustor configuration (Tu ≈ 12) was three times that of the low turbulence wake.

Copyright © 1995 by ASME
Topics: Turbulence , Wakes
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In