Design and Flow Field Calculations for Transonic and Supersonic Radial Inflow Turbine Guide Vanes PUBLIC ACCESS

[+] Author Affiliations
A. W. Reichert

Siemens AG, KWU Group, Mülheim, Germany

H. Simon

University of Duisburg, Duisburg, Germany

Paper No. 95-GT-097, pp. V001T01A022; 14 pages
  • ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 1: Turbomachinery
  • Houston, Texas, USA, June 5–8, 1995
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7878-1
  • Copyright © 1995 by ASME


The design of radial inflow turbine guide vanes depends very much on the discharge conditions desired, especially if the choking mass flow is reached. Because of the choking mass flow condition and supersonic discharge Mach numbers, an inverse design procedure based on the method of characteristics is presented. Various designs which correspond to different discharge Mach numbers are shown. Viscous and inviscid flow field calculations for varying discharge conditions show the properties of the guide vanes at design and off–design conditions.

In a previous paper (Reichert and Simon 1994), an optimized design for transonic discharge conditions has been published. In the present paper, additional results concerning the optimum design are presented. For this optimum design an advantageous adjusting mechanism for a variable geometry guide vane has been developed. The effect of guide vane adjustment on the discharge conditions has been investigated using viscous flow field calculations.

Copyright © 1995 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In