Transition in a Separation Bubble FREE

[+] Author Affiliations
E. Malkiel, R. E. Mayle

Rensselaer Polytechnic Institute, Troy, NY

Paper No. 95-GT-032, pp. V001T01A003; 11 pages
  • ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 1: Turbomachinery
  • Houston, Texas, USA, June 5–8, 1995
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7878-1
  • Copyright © 1995 by ASME


In the interest of being able to predict separating-reattaching flows, it is necessary to have an accurate model of transition in separation bubbles. An experimental investigation of the process of turbulence development in a separation bubble shows that transition occurs within the separated shear layer. A comparison of simultaneous velocity traces from probes separated in the lateral direction suggests that Kelvin-Helmholtz waves, which originate in the laminar shear layer, do not break down to turbulence simultaneously spanwise when they proceed to agglomerate. The streamwise development of intermittency in this region, can be characterized by turbulent spot theory with a high dimensionless spot production rate. Moreover, the progression of intermittency along the centerline of the shear layer is similar to that in attached boundary layer transition. The transverse development of intermittency is also remarkably similar to that in attached boundary layers.

The parameters obtained from these measurements agree with correlations which were previously deduced from turbulence intensity measurements.

Copyright © 1995 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In